欢迎访问陕西翼邦信息科技有限公司的网站
 
  • 产品名称:延安停车场管理系统销售厂家 渭南综合布线厂家 陕西翼邦信息科技有限公司
  • 产品价格:面议
  • 产品数量:10000
  • 保质/修期:1
  • 保质/修期单位:
  • 更新日期:2018-04-23
产品说明

延安停车场管理系统销售厂家 渭南综合布线厂家 陕西翼邦信息科技有限公司 车牌识别的工作原理 识别流程 车牌自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分(如图1所示)。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。 车辆检测 车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。 系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。 号码识别 为了进行车牌识别,需要以下几个基本的步骤: 1) 牌照定位,定位图片中的牌照位置; 2) 牌照字符分割,把牌照中的字符分割出来; 3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。 车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。 1) 牌照定位 自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图像中分离出来。 2) 牌照字符分割 完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。 3) 牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择最佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。 实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像最利于识别。 车牌识别的工作原理 识别流程 车牌自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分(如图1所示)。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。 车辆检测 车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。 系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。 号码识别 为了进行车牌识别,需要以下几个基本的步骤: 1) 牌照定位,定位图片中的牌照位置; 2) 牌照字符分割,把牌照中的字符分割出来; 3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。 车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。 1) 牌照定位 自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图像中分离出来。 2) 牌照字符分割 完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。 3) 牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择最佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。 实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像最利于识别。 车牌识别的工作原理 识别流程 车牌自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分(如图1所示)。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。 车辆检测 车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。 系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。 号码识别 为了进行车牌识别,需要以下几个基本的步骤: 1) 牌照定位,定位图片中的牌照位置; 2) 牌照字符分割,把牌照中的字符分割出来; 3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。 车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。 1) 牌照定位 自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图像中分离出来。 2) 牌照字符分割 完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。 3) 牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择最佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。 实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像最利于识别。
网络无线wifi覆盖解决方案-西安楼宇对讲系统销售价格-陕西翼邦信息科技有限公司
网络无线wifi覆盖解决方案-西安楼宇对讲系统销售价格-陕西翼邦信息科技有限公司
  二是停车场管理系统部分。该部分采用面向对象软件设计方法实现的。数据库平台采用 Windows Server 2003 + SQL Server 2000应用程序平台使用 Microsoft Visual C++开发。整个系统运用了大量的 VC++编程技术,包括图像处理技术、数据库技术、动态链接技术和网络通信技术等。能自动、实时地检测车辆和识别汽车牌照,监控车辆的收费。该系统是在交通的基础上,引入了数字图像的摄录技术、计算机信息管理技术,通过车辆图像信息的采集和处理,提高车辆的智能化管理。
渭南智能客控系统销售厂家-咸阳五方对讲销售厂家-陕西翼邦信息科技有限公司
渭南智能客控系统销售厂家-咸阳五方对讲销售厂家-陕西翼邦信息科技有限公司
大华创新推出了300万像素双目智能视频车位检测器,该产品作为智能停车场管理系统中的重要一环,系统功能高度集成,相比较传统的超声波,其功能更为丰富、更人性化、更具性价比,广泛适用于大型商超、企业、工厂、学校、写字楼等可视化需求管理的地下停车场系统。   在现实生活中我们普遍面临着停车难、寻车难等各种困境,为彻底解决这一难题,大华创新推出了300万像素双目智能视频车位检测器DH-ITC304-PVRB7A-0280B。该产品基于视频智能分析技术,应用在停车场管理系统中,可实现“车位诱导、反向寻车和高清实时监控”三合一功能;同时,产品支持6车位检测识别和双网口串联连接,系统构建成本大幅降低;相较于传统的超声波检测,该机具备的人性化功能,给用户带来了智慧、高效、便捷的停车体验。 停车场,包括封闭式的停车场、开放式的停车场等。目前传统的厂商关注于封闭式停车场的智能化,包括进出口控制、收费管理、车位引导等,另外还有一些立体式的停车场。近年来越来越关注路边的占道停车的管理,是停车系统不可分割的重要部分。除此之外,近年来逐渐出现了停车诱导。   80年代起,随着汽车在我国的普及,车位成了一项新的建筑必备设施,停车场主要任务是保管停放车辆。20世纪初,国内的停车场大量建成,停车场管理系统较为初级,仅停留在出入口的收费管理方面。随着各种技术的应用及城市ITS步伐的加快,停车场信息化管理需求不断增强,车位引导系统应运而生,标志着新一代智能型停车场管理系统的成熟发展。近几年来,从单个停车场的智能化向区域、整个城市的停车的智能化发展。中国是人口打过,也是车辆打过,随着技术的日益完善,停车系统的刚发展必然走向成熟。 .陕西翼邦信息科技有限公司___延安停车场管理系统销售厂家 渭南综合布线厂家 陕西翼邦信息科技有限公司

供应商信息
陕西翼邦信息科技有限公司
其他监控器材及系统
公司地址:陕西省西安市小寨东路196号国贸大厦1幢12313室
企业信息
联系人:王先生
手机:13572977555
注册时间: 2013-02-04

联系人:王先生

联系电话:13572977555

邮箱:83821994@qq.com

地址:陕西省西安市小寨东路196号国贸大厦1幢12313室

 
www.diyiboli.com